Robust Speech Recognition Using PCA-Based Noise Classification
نویسندگان
چکیده
This paper proposes a new environmental noise classification using principal component analysis (PCA) for robust speech recognition. Once the type of noise is identified, speech recognition performance can be enhanced by selecting the identified noise specific acoustic model. The proposed model applies PCA to a set of noise features, and results from PCA are used by a pattern classifier for noise classification. Instead of including both clean and noisy environments in a single classifier, two-step classification is introduced by separating the clean from noisy environments and then identifying the type of noisy environments. The proposed model is evaluated with four types of noise: white, pink, babble, and car from NOISEX-92 and shows a promising result regardless of signal-to-noise ratio (SNR).
منابع مشابه
PCA-Based Speech Enhancement for Distorted Speech Recognition
We investigated a robust speech feature extraction method using kernel PCA (Principal Component Analysis) for distorted speech recognition. Kernel PCA has been suggested for various image processing tasks requiring an image model, such as denoising, where a noise-free image is constructed from a noisy input image [1]. Much research for robust speech feature extraction has been done, but it rema...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کامل